Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps.

نویسنده

  • David F Karnosky
چکیده

Atmospheric CO(2) is rising rapidly, and options for slowing the CO(2) rise are politically charged as they largely require reductions in industrial CO(2) emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO(2) on forest tree growth, productivity, and forest ecosystem function. In this paper, I review knowledge gaps and research needs on the effects of elevated atmospheric CO(2) on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phenology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, I discuss research needs regarding modeling of the impacts of elevated atmospheric CO(2) on forests.Even though there has been a tremendous amount of research done with elevated CO(2) and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO(2). Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO(2). The more we study the impacts of increasing CO(2), the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO(2) with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O(3). Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO(2) enrichment (FACE) technologies or forest stands around natural CO(2) vents are needed to increase the knowledge base on forest ecosystem responses to elevated atmospheric CO(2). In addition, new experimental protocols need to continue to be developed that will allow for mature trees to be examined in natural ecosystems. These studies should be closely linked to modeling efforts so that the inference capacity from these expensive and long-term studies can be maximized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Species Diversity of Trees and Forest Floor Plants in Oriental beech Forest Types of Shastkalate Educational and Research Forest, Gorgan)

Trees are the most important biological elements of forest ecosystems. The variability of the tree species composition inhabiting in the Oriental beech forest, not only forms different forest types but also has a remarkable impact on the species diversity of forest floor plants, due to the existence of trees in the overstory layer. In this research, forest types of an an Oriental beech were ide...

متن کامل

Michopoulos P (2011). Effects of increasing CO2 on trees and intensively monitored plots: research needs in view of future ecosystem studies. iForest 4: 172-175

Introduction There is a growing increase in the impact of elevated atmospheric CO2 on forest trees and forest ecosystems. This is not surprising as forests cover some 27% of the total land surface but account for some 70% of ter­ restrial net primary production (Melillo et al. 1993). Moreover, more than 85% of the total plant C on earth and between 60-70% of the total soil C is contained in for...

متن کامل

Canopy gaps characteristics and structural dynamics in a natural unmanaged oriental beech (Fagus orientalis Lipsky) stand in the north of Iran

Canopy gaps are one of the most important structural features of forest ecosystems, and studying of them can have useful results and implications for forest management. The aim of this study is investigation of characteristics and regeneration within canopy gaps in an intact beech stand in the Shastkalateh Experimental Forest of Hyrcanian region, north of Iran. All canopy gaps and related fores...

متن کامل

Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2.

Forest ecosystems are important sinks for rising concentrations of atmospheric CO(2). In previous research, we showed that net primary production (NPP) increased by 23 +/- 2% when four experimental forests were grown under atmospheric concentrations of CO(2) predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, some combination of ...

متن کامل

Elevated CO2 reduces leaf damage by insect herbivores in a forest community.

By altering foliage quality, exposure to elevated levels of atmospheric CO(2) potentially affects the amount of herbivore damage experienced by plants. Here, we quantified foliar carbon (C) and nitrogen (N) content, C : N ratio, phenolic levels, specific leaf area (SLA) and the amount of leaf tissue damaged by chewing insects for 12 hardwood tree species grown in plots exposed to elevated CO(2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environment international

دوره 29 2-3  شماره 

صفحات  -

تاریخ انتشار 2003